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A modification of the parallel-approach method (or method of consecutive leads) [1, 2] is investigated based on solving an inverse
dynamical problem: a motion given by the parallel-approach method is taken to be the perfect state of the mutual motion of an
object and target, and the dynamics of a transition process is set up whereby the perfect state is re-established after being disrupted.
The control forces are calculated from the equations of motion of the object and the prescribed equation for the transition process.

1. DESCRIPTION OF THE ALGORITHM.
THE EQUATIONS OF MOTION

We introduce the following notation (Fig. 1): R and Ry are respectively the radius vectors of the target
and object relative to the origin of an inertial system of coordinates, r = R — Ry is the radius vector of
the target with respect to the object, d is the projection of the vector r onto the plane perpendicular
to the vector v = F, e is the unit vector collinear with the vector d, and d = | d | is the distance between
the target and the line along which the relative velocity vector of the object instantaneously lies. Here
and below the length of the vector x is denoted by x.

The dynamics of the object are described by the equation

RO = u+g (1.1)

where u is the controlling acceleration vector and g is the acceleration due to external forces (such as
gravity). The object is controlled according to the following rules

(A) the vector u is collinear with the vector d;

(B) the quantity d satisfies the differential equation

d+od=0 (1.2)

where a. > 0 is a constant characterizing the rate of the transition process.

The quantity d has thus been chosen as a measure of the deviation from the “perfect” parallel-approach
motion in which the relative velocity vector v = R, — R is directed at the target. If initially d = 0, then
from Eq. (1.2) d(?) = 0 and the given homing algorithm is identical with the parallel-approach method.
We shall assume that at the initial time #; the angle ¢ between the vectors v and r is acute, i.e. 0 < ¢ <
/2. We therefore have (v(ty), r(fp)) > 0 and d(fp) # 0. From Eq. (1.2) it follows that d(f) # 0 when ¢t =
to. We shall also assume that the relative velocity v(¢) satisfies the condition vy = v(f) = vy > 0, where
Vg, V; are constants, and the vector functions g and Rare bounded.

Using Eqs (1.1) and (1.2) and rules A and B to determine the control, we find the vector u. We have
(Fig. 1)

d=r—-vr, V), d=(W2-(r, v)2)I2

where (r, v) is the scalar product of the vectors r and v.
We differentiate 4 with respect to time

tPrikl. Mat. Mekh. Vol. 59, No. 3, pp. 410418, 1995.

387



388 L. D. Akulenko et al.

Fig. 1.

i 2 OV v, v)(r, ¥)
- D3(r2‘02 _(r,v)z )1/2

and note that the denominator does not vanish since d # 0. We substitute d and d into Eq. (1.2). After
some reduction we obtain

(r, V)2 (v, V)= v, v)(r, V) + or’v? — o?(r,v)? =0 1.3)

By assumption A the controlling acceleration vector u is directed along d, i.e. u = we. Using the
notation introduced above we rewrite Eq. (1.1) in the form

v=ue+g-R (14)
The vector e is expressed in terms of r and v as follows:

e= \)zr—(r,v)v
o(r? Zr, )7

(1.5)
Substituting expressions (1.4) and (1.5) into Eq. (1.3) and using (v, ) = 0, we obtain an equation
from which we find the magnitude of the control

Ly ® v) (v, W) = v2(r, v)(r, W) + ar?v?* —ov?(r, v)?
v(r, v)(r’v* - (r,v)*)""?

where W = g — R. Equation (1.4) for the motion of the object relative to the target acquires the closed
form

. (uzr—(r,v)v,W)_ a 2. N 1
"‘[Uz(rz,uz_(r,v)z) (r,v)](ur (V) -W (16)

Hence, in order to calculate the control using the given algorithm, it is necessary to know the radius
vector of the target relative to the object, their relative velocity, and also the absolute target acceleration
Rand the acceleration due to the external forces g.

2. INVESTIGATION OF THE ALGORITHM. TRAJECTORY BEHAVIOUR

To check the effectiveness of the algorithm it is necessary to verify that the object reaches a sufficiently
small neighbourhood of the target. We shall show that with special assumptions and when there are
no restrictions on the control, given enough time the object will arrive in an arbitrarily small
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neighbourhood of a point target. This also solves the problem of the impact of the object on a target
of finite size.

We consider the following quantities: the distance r(f) between the object and the target, the cosine
x(t) = (r, v)/u(t) = cos ¢ of the angle between the vectors v and r, and the modulus v(¢) of the relative
velocity of the object and target. We differentiate the variables x, r and v with respect to ¢ (the derivative
x being calculated using (1.6)). We put w = (v, W)/v. We obtain the system of differential equations

%= (ar—vx)(1-x2)/(rx), F=-vx,0=w (2.1)

We consider w to be an unknown function of time which satisfies the constraint | w(t) | < wy, where
Wy is a constant. .

The vector equation (1.6) is equivalent to a sixth-order system of differential equations. It is convenient
to study the behaviour of the trajectories of Eq. (1.6) as ¢t — oo using system (2.1). Suppose r(f), v(f)
is some trajectory of Eq. (1.6), ¢ = ty, and (r(fo), v(fp)) > 0 at the initial time #. We consider the cor-
responding trajectory (x(2), r(t), v(t)) of system (2.1). Because d = r(1 -x»)2 > 0, we have r(f) > 0 and
x(¢) < 1 whent e [#, ).

The inequality x(¢) > 0 is preserved when ¢ > #, i.e. the projection of the relative velocity v along
the radius vector r is always positive.

Proof. Assume the contrary. Let t; > ¢, be the earliest time at which x(#;) = 0. Since x(t), r(¢) is continuous with
respect to ¢, r(t;) > 0, and the velocity v(t) is assumed to be bounded, #,, £y < ¢, < ¢, exists such that or(t) — v(E)x(¢)
> Owhen 1, < ;. Then the derivative £(f) and the quantity x(¢) itself are positive when £, < ¢ < ¢;, which contradicts
x(t;) = 0. Hence x(t) > Owhen t = ¢,

From this and from the second equation in (2.1) it follows that 7(f) < 0 along the trajectory, i.c. the
distance between object and target decreases monotonically. It turns out that 7(t) > 0 ast — oo,

Proof. Assume the contrary. Let r(f) = r; > 0. By assumption v(f) < v;. Hence an x;, 0 < x; < x(tp) exists such
that or; — ux > 0 if x < x;. Suppose that t; > ¢; is the earliest time at whichx(f) = xy, i.e. x(t) > x(t;) = x, fp <¢
< t;. From the choice of x; the right-hand side of the first equation in (2.1) at time z, is positive, so that the derivative
X(t,) is also positive, which contradicts the inequality x(¢) > x(t,), ¢ < t,. Hence inequality x(f) > x, is preserved for
all ¢ = ¢;. Then from the second equation in (2.1) we obtain () = —v()x(f) < -vyx; < 0, i.e. the function r(f)
decreases without limit. This contradiction proves that () — 0 ast — eo.

We will estimate the rate of approach of the object and target by differentiating the quantity y(f) =
ar(?) — v(t) x(t) with respect to time. We obtain

dy/dt = —x(0w + w) — (1 - x2)Y/(rx)

We will assume that owg > wy. This inequality can always be satisfied by choosing an appropriate o.
Then y(r) < 0 if w(r) = 0. From this it follows that the quantity () vanishes along the trajectory no
more than once, when it changes sign from plus to minus. The sign of the derivative x is the same as
the sign of y, and so the phase coordinate x(f) increases when y(f) > 0 and decreases when y(t) < 0.

Let ¢; be such that y(#) < 0. It follows from the arguments given above that y(f) < 0 when ¢ > ¢,.
Then or(t) < v(f)x(t), and from the second equation of system (2.1) we have

() = =v(Ox() <-aur(@), t>1
From this we obtain an estimate for the time-dependence of the distance r
r(t) < r(g)e M, >y (22)

where ¢, is such that or(z;) =< v(tx(¢1).

3. A SPECIAL CASE

We consider the case W = 0, i.e. the algorithm is used to guide the object when there are no external forces onto
a target moving with a constant velocity in a straight line. Without loss of generality we will assume the target to be
stationary (which can be achieved by a suitable change of variables). In this case Eq. (1.6) is equivalent to the system
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Vv =—ov + olr/(r,v), F=-v 3.1
Since dv¥dt = 2(v, ¥) = 2(v, u) = 0 we have v = const, and system (2.1) acquires the form
x=( =2 (or —v(r, x), r=-vx 3.2)

where o, v are constant coefficients.

We consider part of the phase plane of system (3.1): r > 0, 0 < x < 1 (Fig. 2). Its vector field is constructed as
follows: on the line x = 1 we have x = 0, r = —v and on the line or = uxr we have x = 0, above this line x > 0 and
below —x < 0. The system trajectory behaves as follows: the coordinate r(¢) strictly decreases and Ht) — 0 as ¢ —
oo, the coordinate x(¢) increases up to the intersection with the line or = wx, and then decreases. It is easy to see
that x(f) — 0 when ¢ — o, as otherwise it follows from the second equation of (3.2) that rt — — oo

It is clear from the structure of the vector field that for each trajectory starting above the line or = ux, there is
a unique point of intersection with that line. Suppose x; = x(t;), r; = r(t,) are such that ar;< v, i.e. the point
(x4, ry) cither lies on the line or = ux or below it. Then the quantity r(¢) satisfies inequality (2.2) when 7 = ¢,.

Let xg = x(to), ro = 1(ty) be the initial point of a trajectory situated above the line o = ux, and let t; be the time
of intersection of the trajectory with this line. It is interesting to investigate how the time ¢, — #, taken to reach this
line depends on x; and 7.

We will derive two estimates.

The coordinate x(¢) increases along the trajectory above the line ar = ux, and we therefore have | 7(f) | = ux(f)
= g, 4y <t <, (Fig. 2). Furthermore, r, > wry/o.. From this we obtain an estimate for the time taken to reach
the line ar = ux from the point (xg, 7o)

1 — 19 < (g — Vxg/a)/(Vg) = (o — V)X 3.3)
When x; = 1 this estimate is exact, but it becomes coarser as x, decreases.
We will obtain another estimate which is better for small x. We put &(f) = or(f) — we(f) + vx3. Because the

section of the trajectory under consideration lies above the line or = ux, we have §(f) > 0,y <t < t,. We differentiate
E(r) with respect to time. Since x < x(f) < 1, we have

E(0) = —v(or —vx + v)/(ry) < <00 - vy + ng Wrg=-0&(0)fry <0
from which it follows that
t1 = to < rolnE )& )
Using &(t,) = ux? we obtain yet another estimate for the time taken to reach the line or = wr
1) — 1y < roln((org — vxg)/(V X2 )+ /v (34)

Figure 3 shows graphs of the dependence on x, of the right-hand sides of the estimates derived for the following
parameter values: o = 0.5, rp = 100, v = 10. The continuous and dashed lines correspond to estimates (3.3) and
(3.4), respectively.

We will conclude the investigation of this special case by calculating the absolute magnitude of the control. From
the first equation in (3.1) we obtain
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Fig. 2. Fig. 3.
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ul = (v, ¥) = 0201 — x2)x2 = avtgle (35)
The quantity u(¢) therefore depends monotonically onx (and consequently on the angle ¢): it decreases whenever
x increases, i.e. up to the intersection of the trajectory with the line or = ux, and it then increases. If the condition
| u(t) | < up is imposed on the control, then u(¢) reaches the constraint when
x(0) = av(o®v? + u (2))“/2

is satisfied, at which point it is impossible to continue the given algorithm with the previously given coefficient a.

4. OPTIMAL TARGET BEHAVIOUR

We return to the case W # 0. The controlling acceleration of the object is governed by the guiding
algorithm, whereas the behaviour of the target is arbitrary. How should one move the target, i.e. what
should the acceleration W be, in order to “worsen” the approach? An answer to this question may be
obtained by solving an optimal control problem (optimal from the point of view of the target). Various
formulations of this problem are possible. We will consider one of them.

Suppose that the behaviour of the system is described by Eqs (2.1), where the control w(f) is a
piecewise-continuous function and is governed by the constraint

WOl < wy 4.1)
It is required to find a control law w(?), #, < t < T satisfying constraint (4.1) such that the distance
r(T) at the final time T of the process is maximized.
To solve this problem we use the Pontryagin maximum principle [3]. The Hamiltonian for system
(2.1) has the form
H = p(1 =320 = 0x)/(ry) — paox + paw

Here py, p», p5 are the canonically conjugate momenta corresponding to the phase variables x, r and
v, respectively. We write out the conjugate equations

Py == p1(2023 — oux? — o)/ (x?) + pyo (42)
p2==pi(1 =x0/r2, p3=pi(1 = x3)/r + pyx
In this case the transversality condition takes the form
PN =pyN =0, p(N=1 43)

From the maximum principle we obtain the following necessary condition for the optimality of the
control w(r)

w() = wpsign p; (4.4)
It can be shown that
P31 <0, tg st<T 4.5)

Then w(t) = — wy.

To prove inequality (4.5) we differentiate p; with respect to time and use (2.1) and (4.2). After some reduction
we obtain a linear differential equation in p;

dpsjdt = a1 ~ 222 py (4.6)

It was shown in Section 2 that x(f) > 0. Hence the function o(1 — x*)x”% is bounded in the interval [¢,, 7] and
Eq. (4.6) satisfies the solution uniqueness condition. Since this equation has a zero solution, all its other solutions
have constant sign. From (4.3) and the final equation in (4.2) it follows that p3(T) = x(T) > 0. Then p4(¢) > 0, and
using p3(T) = 0 we obtain (4.5).
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We return to Eq. (1.6) describing the motion of the object relative to the target. In this equation the
vector function W(z) can be considered as the control for the target. If the constraint |W()| < wy is
imposed on the function W(¢), inequality (4.1) will follow from the definition of w(¢). This restriction
is satisfied by the unique vector function W(f) = —wgu™'(f)¥(t) which realizes the optimal control law
w(t) = —w.

We will verify that the control obtained is optimal. Because the necessary condition for optimality—
the maximum principle—is satisfied by a unique control, it is sufficient to show the existence of the
solution of the given optimal control problem.

We will extend the class of admissible controls. We shall assume that w(t) is a measurable function
which satisfies constraint (4.1) almost everywhere on [z, T}, i.e. the set of admissible controls D is a
sphere of radius wy in the space L..([#g, T]).

Suppose as before that the initial state of system (2.1) satisfies the inequalities 7(fp) > 0, 0 < x(fp) < 1,
and that instead of the assumption 0 < vy < V(t) < vy, § < ¢ < T we impose the constraint v(t)y >
wo(T — tg). From the arguments given in Section 2 it follows that for any w(f) € D a solution of the
system of differential equations (2.1) exists in the interval [, T].

The variable r(t) decreases along the solution of system (2.1), and so the functional I(w) = — r(T) is
bounded from below: I(w) = —r(f;). A minimizing sequence of admissible controls w(t) € D : I(w;) >
I(w;41), I(w;) — inf,,.p I(w) exists as i — c. We know [4] that the sphere D is compact in the *-weak
topology of the space L..([ty, T]), which is dual to the space Ly([ty, T]). Hence a sequence w;, and a
function w« € D exist such that

fo

T T
kli_l)n jg(s)w,.k (s)ds =] g(s)w.(s)dsVg e L([t,,T)) 4.7
Iy

We denote by yi(f) = (xx(2), 7i(t), ve(¢)) the solution of system (2.1) corresponding to the control w;,(¢).
Since 0 < ri(t) < r(tp), 0 < xi(t) < 1,0(tg) — wo(T — to) < Vi (t) < v(ty) + wo(T —to) for all k, the sequence
of functions y;(¢) is uniformly bounded on [t,, T]. It can be shown that it is also equicontinuous.

It is sufficient to prove the uniform boundedness of the right-hand side of the system on the trajectories yi(?).
The variables r(f) and x(¢) are connected by the relation r(£)(1 - x1)'? = d(f), and the quantity d satisfies Eq.
(1.2). Hence, for any k

FUTY(L = XYY = r(to)(| = x2(t)) V2 exp (~ou(T - 1)) (4.8)

Note that the right-hand side of Eq. (4.8) is a constant quantity, depending only on the initial position of the
system. The sequence I(w;,) = —r,(T) decreases as k increases, and the function r(¢) decreases with ¢, and so

O<riD=rM=sr®, k=12,..., pn=i1=<T 4.9)
From this and from (4.8) we obtain
.Xl(T) = xk(T) (4.10)

It was shown in Section 2 that the coordinate x(¢) increased when (i) > 0 and decreased when (i) < 0, and
that y(¢) vanished no more than once, when it changed sign from plus to minus. Hence, for any trajectory of system
(2.1) the inequality min (x(¢o), x(T)) < x(t), t, <t < T is satisfied. Using (4.10) we obtain 0 < min (x(to), x,(T)) <
x(0),k =1,2,...,t <t =< T. Thus the denominator x(£)r,(f) on the right-hand side of the equation for the derivative
of x is governed by the constraint 0 < r1(T) min (x(z), x;(T)) < x,{t)rit), k = 1,2, ..., tp <t < T. Consequently,
the right-hand side of system (2.1) is uniformly bounded in £, ¢ along the trajectories y,(t), and the sequence of
functions y(¢) is equicontinuous.

By Artsel’s theorem a subsequence y, (¢) exists that converges uniformly to some function y«(t). We
verify that the function y«(¢) is a solution of system (2.1) with control w.(f). We represent system (2.1)
with control w(¢) in the form

Y (0) = y(ty) + jf(yk (T)dt+|w(t)dt

fo fo

where the vector function f(y) denotes the right-hand side of the system without the control. It is clear
that
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n | FO(tdt={ £y, (D))ds

Tir
koo o fo

The equality

' !
lim fw, (T)dt=fw_(T)dt
ke To Ty

follows from Eq. (4.7) in which one must put

I, if sttt
g(1)= D
0, if t<tsT

The function y«(¢) is therefore a solution of system (2.1) with control w«(¢). Because {w;} is a minimizing
sequence, y«, ws is an optimal process, i.e. I(w+) = inf,, . p I(w).

There is thus a solution on the set D of the optimal control problem under consideration. The optimal
control is unique because it is uniquely defined by the maximum principle—a necessary condition for
optimality—and has the form w.(f) = —wj, almost everywhere on [tg, T]. It is clear that the function
ws(t) = —w, is also the unique optimal control in the class of piecewise-continuous functions.

5. NUMERICAL RESULTS

Figures 2, 4 and 5 show the results of calculations for the special casc W = 0. Equation (1.6) and system
(3.2) were integrated numerically using the Runge—Kutta method with the following parameter values: o = 0.5,
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v = 1000. The continuous lines correspond to trajectories leaving the point r = (6000, 0, 0), r = (-300, -954, 0)
in the phase space r, r, while the dashed lines are trajectories leaving the point r = (2000, 0, 0), r = (-100,
-995, 0). Here r is a radius vector giving the position of the object in an inertial system of coordinates with the
target at the origin. In phase variables x, r the corresponding initial conditions for system (3.2) have the form r =
6000, x = 0.3 and r = 2000, x = 0.1.

Figure 2 shows trajectories of system (3.2) in the phase space x, r, while Fig. 4 is a graph of the time-dependence
of the distance between the object and target; the points denote instants of intersection of the trajectory with the
line ar = ux. Figure 5 shows the initial segment of the trajectory of motion of the object in the OXY plane of the
inertial system of coordinates; the points show the position of the object at the indicated times.
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