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A modification of the parallel-approach method (or method of consecutive leads) [1, 2] is investigated based on solving an inverse 
dynamical problem: a motion given by the parallel-approach method is taken to be the perfect state of the mutual motion of an 
object and target, and the dynamics of a transition process is set up whereby the perfect state is re-established after being disrupted. 
The control forces are calculated from the equations of motion of the object and the prescribed equation for the transition process. 

1. D E S C R I P T I O N  OF THE A L G O R I T H M .  
THE E Q U A T I O N S  OF M O T I O N  

We introduce the following notation (Fig. 1): R and R0 are respectively the radius vectors of the target 
and object relative to the origin of an inertial system of coordinates, r = R - R0 is the radius vector of 
the target with respect to the object, d is the projection of the vector r onto the plane perpendicular 
to the vector v = / ' ,  e is the unit vector collinear with the vector d, and d = I d I is the distance between 
the target and the line along which the relative velocity vector of the object instantaneously lies. Here 
and below the leng~th of the vector x is denoted by x. 

The dynamics of the object are described by the equation 

Ro = u + g (1.1) 

where u is the controlling acceleration vector and g is the acceleration due to external forces (such as 
gravity). The object is controlled according to the following rules 

(A) the vector u is collinear with the vector d; 
(B) the quantity d satisfies the differential equation 

d + ~ = 0 (1.2) 

where tx > 0 is a constant characterizing the rate of the transition process. 
The quantity d has thus been chosen as a measure of the deviation from the "perfect" parallel-approach 

motion in which the relative velocity vector v = 1~0 - 1~ is directed at the target. If initially d = 0, then 
from Eq. (1.2) d( t )  "- 0 and the given homing algorithm is identical with the parallel-approach method. 
We shall assume that at the initial time to the angle ¢ between the vectors v and r is acute, i.e. 0 < ¢ < 
~/2. We therefore have (v(t0), r(t0)) > 0 and d(to) ;e O. From Eq. (1.2) it follows that d( t )  ;e 0 when t t> 
to. We shall also assume that the relative velocity v(t).satisfies the condition Ul I> u(t) I> u0 > 0, where 
a~0, ul are constants, and the vector functions g and Rare bounded. 

Using Eqs (1.1) and (1.2) and rules A and B to determine the control, we find the vector u. We have 
(Fig. 1) 

d = r - x)-2(r, v)v, d = (r21) 2 - (r ,  v)2) I/2 

where (r, v) is the scalar product of the vectors r and v. 
We differentiate d with respect to time 
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Fig. 1. 

d = (r '  v)2(v'i ')  - 1)2(r 'v)(r ' i ')  
D 3 (r21) 2 - ( r ,  v)  2 )1/2 

and note that the denominator does not vanish since d # 0. We substitute d and d into Eq. (1.2). After 
some reduction we obtain 

( r ,  v) 2 (v ,  v ) -  D 2 ( r , v ) ( r , v )  + ~r2D 4 - ~1)2(r ,  v)  2 = 0 (1.3) 

By assumption A the controlling acceleration vector u is directed along d, i.e. u = ue. Using the 
notation introduced above we rewrite Eq. (1.1) in the form 

= ue  + g - R ( 1 . 4 )  

The vector e is expressed in terms of r and v as follows: 

1 ) 2 r -  ( r , v ) v  
e = 1)(r21)2 _ ( r , v ) 2 ) l l 2  (1.5) 

Substituting expressions (1.4) and (1.5) into Eq. (1.3) and using (v, e) = 0, we obtain an equation 
from which we find the magnitude of  the control 

U---- 
(r, v) 2 (v, W) - 1) 2 (r, v)(r, W) + 0~r21) 4 - (xw 2 (r, v) 2 

1)(r, v)(r21) 2 - (r, v)2) I/2 

where W = g -  R. Equation (1.4) for the motion of  the object relative t o  the target acquires the dosed  
form 

i 
[ (1 )2 r_ ( r , v )v ,W)  ~ ] 

= L 1)~ ( --r21)---)-- (r, v) - - - - i )  (r, v) (1)2r - (r, v)v) - W (1.6) 

Hence, in order to calculate the control using the given algorithm, it is necessary to know the radius 
vector of the target relative to the object, their relative velocity, and also the absolute target acceleration 

and the acceleration due to the external forces g. 

2. I N V E S T I G A T I O N  OF T H E  A L G O R I T H M .  T R A J E C T O R Y  B E H A V I O U R  

To check the effectiveness of the algorithm it is necessary to verify that the object reaches a sufficiently 
small neighbourhood of  the target. We shall show that with special assumptions and when there are 
no restrictions on the control, given enough time the object will arrive in an arbitrarily small 
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ne ighbourhood  of  a point  target .  This  also solves the p rob l em of  the impact  o f  the object  on a target  
o f  finite size. 

We consider  the following quantit ies:  the dis tance r(t) be tween  the object  and the  target,  the cosine 
x ( t )  = (r,  v)/~(t) = cos {9 o f  the angle  be tween  the  vectors  v and r, and the modu lus  ~(t)  o f  the relative 
velocity of  the object  and target.  We different ia te  the  var iablesx,  r and v with respect  to t ( the derivative 

being calculated using (1.6)). We put  w = (v, W)/v.  We obtain  the system of  differential  equat ions  

.~ = ( ~ r  - Dx)(I - x 2 ) / (rx), r = -~)x, ~ = w (2.1) 

We consider  w to be  an unknown funct ion of  t ime  which satisfies the constraint  I w(t )  I ~< w0, where  
w0 is a constant .  

T h e  vector  equat ion (1.6) is equivalent  to a sixth-order system of  differential equations. It  is convenient  
to study the behaviiour o f  the t rajectories  of  Eq. (1.6) as t ~ ~, using system (2.1). Suppose  r(t),  v(t) 
is some  t ra jectory of  Eq. (1.6), t I> to, and (r(t0), v(t0)) > 0 at the  initial t ime to. We consider  the cor- 
responding  t rajectory (x(t) ,  r(t),  a)(t)) o f  system (2.1). Because  d = r(1 -x2 )  lrz > 0, we have r ( t ) >  0 and 
x( t )  < 1 when  t ~ [,~0, 0"). 

T h e  inequali ty x( t )  > 0 is p reserved  when  t > to, i.e. the project ion of  the relative velocity v along 
the radius vec tor  r is always positive. 

Proof. Assume the contrary. Let t 1 > t o be the earliest time at which X(tl) = 0. Since x(t), r(t) is continuous with 
respect to t, r(tl) > 0, and the velocity ~(t) is assumed to be bounded, t2, to < t2 < tl exists such that 0tr(t) - v(t)x(t) 
> 0 when t2 <~ h. Then the derivative £(t) and the quantityx(t) itself are positive when t2 ~< t < tl, which contradicts 

x(h)  = 0. Hence x(t) > 0 when t/> to 

F r o m  this and f rom the second equa t ion  in (2.1) it follows tha t  P(t) < 0 a long the trajectory,  i.e. the 
dis tance be tween  object  and target  decreases  monotonical ly .  I t  turns out  tha t  r(t) ---> 0 as t ---> **. 

Proof. Assume the contrary. Let r(t) i> rl > 0. By assumption v(t) <~ 1)1- Hence an xl, 0 < xl < X(to) exists such 
that C~rl - a~x > 0 ifx ~< xl. Suppose that h > to is the earliest time at which x(t)  = Xl, i.e. x(t) > x(h)  = xl,  to <~ t 
< tl. From the choice ofxl the right-hand side of the first equation in (2.1) at time tl is positive, so that the derivative 

x(h) is also positive, which contradicts the inequalityx(t) > x(h),  t < tl. Hence inequalityx(t) > xl is preserved for 
all t ~> to. Then from the second equation in (2.1) we obtain ?(t) = -u( t )x( t )  ~< -u0 Xl < 0, i.e. the function r(t) 
decreases without limit. This contradiction proves that r(t) ---> 0 as t ---> ~. 

We will es t imate  the ra te  of  approach  of  the  object  and target  by differentiat ing the quant i ty  ¥ ( t )  = 
o~r(t) - u( t )  x ( t )  wit!h respect  to t ime.  We obta in  

d ~ / d t  = -x (o t~  + w)  - ag( l - xZ)~/(rx)  

We will assume that  a~0 > w0. This  inequali ty can always be  satisfied by choosing an appropr ia te  a .  
T h e n  ~( t )  < 0 if ¥ ( t )  = 0. F r o m  this it follows tha t  the quanti ty ~( t )  vanishes along the  t rajectory no 
m o r e  than  once,  wlhen it changes sign f rom plus to minus. The  sign of  the derivative £ is the  same as 
the  sign of  ¥ ,  and so the phase  coord ina te  x( t )  increases  when  ¥( t )  > 0 and decreases  when  ¥( t )  < 0. 

L e t  tl be  such that  ~( t )  ~< 0. It  follows f rom the a rguments  given above that  ¥ ( t )  < 0 when  t > h.  
T h e n  0~'(t) < a~(t)x(t), and f rom the second equa t ion  of  system (2.1) we have 

~'(t) = -~)(t)x(t)  < -o~r(t), t > tt 

F r o m  this we obtain  an es t imate  for  the t ime-dependence  of  the distance r 

r( t)  <~ r( t  I )e -a(t-t j) ,  t > t I (2.2) 

where  tl is such tha.t 0v'(h) ~< a)(tl)X(tl). 

3. A S P E C I A L  C A S E  

We consider the ca:~e W = 0, i.e. the algorithm is used to guide the object when there are no external forces onto 
a target moving with a constant velocity in a straight line. Without loss of generality we will assume the target to be 
stationary (which can be achieved by a suitable change of variables). In this case Eq. (1.6) is equivalent to the system 
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= --tXV + {Xaflr/(r, v), i" = -v  (3.1) 

Since d'o2/dt = 2(v, i,) = 2(v, u)  = Owe have u = const, and system (2.1) acquires the form 

A = ( I - x 2 ) ( o 0  - - ux)/(r, x ) ,  i" = - ~ x  ( 3 . 2 )  

where ix, u are constant coefficients. 
We consider part of the phase plane of system (3.1): r > 0, 0 < x ~< 1 (Fig. 2). Its vector field is constructed as 

follows: on the line x = 1 we have ~ = 0, r = - u  and on the line txr = m we have ~ = 0, above this line ~ > 0 and 
below -~ < 0. The system trajectory behaves as follows: the coordinate r(t) strictly decreases and r(0 --¢ 0 as t --¢ 
**, the coordinate x( t )  increases up to the intersection with the line txr = ux, and then decreases. It is easy to see 
that x( t )  ~ 0 when t ---} **, as otherwise it follows from the second equation of (3.2) that rt ~ - **. 

It is clear from the structure of the vector field that for each trajectory starting above the line e,r = ur,  there is 
a unique point of intersection with that line. Suppose Xx = x(tx) ,  rl = r( t l )  are  such that etrl~< ulx 1, i.e. the point 
(xx, rl) either lies on the l ine txr = a~x or below it. Then the quantity r(t) satisfies inequality (2.2) when t i> tx. 

L e t x o  = x(to),  r0 = r(t0) be the initial point  of a trajectory situated above the line otr = a~x, and let tl be the time 
of intersection of the trajectory with this line. It is interesting to investigate how the time tl - to taken to reach this 
line depends on x0 and r 0. 

We will derive two estimates. 
The coordinate x( t )  increases along the trajectory above the line ou- = a~¢, and we therefore have ] k(t) ] = ux(t) 

I> ur0, to ~< t <~ tl (Fig. 2). Furthermore,  rl > urot~ From this we obtain an estimate for the time taken to reach 
the line ctr = ux from the point  (x0, r0) 

t, - to -< (r0 - ~xo/Ct)/(~x0) = ( o % -  ~.~o)lct~xo (3.3) 

When x0 = 1 this estimate is exact, but  it becomes coarser as x0 decreases. 
We will obtain another  estimate which is better  for small Xo. We put  ~(t) = txr(t) - ux(t) + ux 2. Because the 

section of the trajectory under  consideration lies above the line 0w = ur, we have ~(t) > 0, to ~< t ~< tv We differentiate 
~(t) with respect to time. Since x0 ~< x( t )  ~< 1, we have 

~(t) = - v ( a r  - 9 x  + vjxa)/(rx) <~ -~(oo" - v x  + ~ X  2o)h'o = -a~( t ) / r  0 < 0 

from which it follows that 

t I - t o <~ roln(~(to)l~(tl))/~ 

Using ~(tl) = ux 2 we obtain yet another  estimate for the time taken to reach the line ow = ux 

tl - t  o ~< r01n((co" 0 -Uxo)/(9x 2)+ 1)/~ (3.4) 

Figure 3 shows graphs of the dependence on x 0 of the right-hand sides of the estimates derived for the following 
parameter  values: ot = 0.5, r 0 = 100, ~ = 10. The continuous and dashed lines correspond to estimates (3.3) and 
(3.4), respectively. 

We will conclude the investigation of this special case by calculating the absolute magnitude of the control. From 
the first equation in (3.1) we obtain 
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u2= (~,, ~') = ~2X)2(1 -x2)/x 2 = 0t2D2tg2tp (3.5) 

The quantity u(t) therefore depends monotonically onx (and consequently on the angle ~): it decreases whenever 
x increases, i.e. up to the intersection of the trajectory with the line ~r = ux, and it then increases. If the condition 
I u(t) I <~ Uo is imposed on the control, then u(t) reaches the constraint when 

X ( I )  = ~1)(Ct21.) 2 + It 2) -I/2 

is satisfied, at which point it is impossible to continue the given algorithm with the previously given coefficient a. 

4. O P T I M A L  T A R G E T  B E H A V I O U R  

We return to the case W ~ 0. The controlling acceleration of the object is governed by the guiding 
algorithm, whereas the behaviour of the target is arbitrary. How should one move the target, i.e. what 
should the acceleration W be, in order to "worsen" the approach? An answer to this question may be 
obtained by solving an optimal control problem (optimal from the point of view of the target). Various 
formulations of this problem are possible. We will consider .one of them. 

Suppose that the behaviour of the system is described by Eqs (2.1), where the control w(t )  is a 
piecewise-continuoas function and is governed by the constraint 

Iw(t)l ~< w 0 (4.1) 

It is required to lind a control law w(t) ,  to <~ t <~ T satisfying constraint (4.1) such that the distance 
r(T) at the final time T of the process is maximized. 

To solve this problem we use the Pontryagin maximum principle [3]. The Hamiltonian for system 
(2.1) has the form 

H = p I(1 - x2)(cxr - 9x)/(r~) - 112ux + paw 

Herep l ,  p2,P3 are the canonically conjugate momenta  corresponding to the phase variables x, r and 
~, respectively. We write out the conjugate equations 

/)1 = - Pl( 2~x3 - O~l'x2 - -  0~/')/(I'X2) + P2 ~ (4.2) 

/)2 = - P l ( 1 - x2)'t)//"2, /)3 = P l( 1 - x2)/r + p2 x 

In this case the transversality condition takes the form 

p I ( T ) = p 3 ( T ) = 0 ,  p 2 ( T ) =  1 (4.3) 

From the maximum principle we obtain the following necessary condition for the optimality of the 
control w(t )  

w(t)  = w0sign P3 (4.4) 

It can be shown that 

p3(t) < 0, t o ~< t < T (4.5) 

Then w(t )  = - wo. 

To prove inequality (4.5) we differentiate~ with respect to time and use (2.1) and (4.2). After some reduction 
we obtain a linear difterential equation i n ~  

dP3/dt = a(l - x2)x ~2 P3 (4.6) 

It was shown in Section 2 that x(t) > 0. Hence the function a(1 - x2)x -z is bounded in the interval [to, T] and 
Eq. (4.6) satisfies the solution uniqueness condition: Since this equation has a zero solution, all its other solutions 
have constant sign. From (4.3) and the final equation in (4.2) it follows that/h(T) = x(T) > 0. Then/h(t) > 0, and 
usingp3(T) = 0 we obtain (4.5). 
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We return to Eq. (1.6) describing the motion of the object relative to the target. In this equation the 
vector function W(t) can be considered as the control for the target. If the constraint I W(t) I ~ w0 is 
imposed on the function W(t), inequality (4.1) will follow from the definition of w(t) .  This restriction 
is satisfied by the unique vector function W(t) = -Wo~-l( t )v( t )  which realizes the optimal control law 
w(t)  = -Wo. 

We will verify that the control obtained is optimal. Because the necessary condition for optimality--  
the maximum principle--is satisfied by a unique control, it is sufficient to show the existence of the 
solution of the given optimal control problem. 

We will extend the class of  admissible controls. We shall assume that w(t)  is a measurable function 
which satisfies constraint (4.1) almost everywhere on [to, 7], i.e. the set of admissible controls D is a 
sphere of radius w0 in the space L.([t0, 7]). 

Suppose as before that the initial state of system (2.1) satisfies the inequalities r(t0) > 0, 0 < X(to) < 1, 
and that instead of the assumption 0 < a) 0 ~< ~(t) ~< Ul, to ~< t ~< T we impose the constraint a)(t)0 > 
wo(T - to). From the arguments given in Section 2 it follows that for any w(t)  e D a solution of the 
system of differential equations (2.1) exists in the interval [to, 7]. 

The variable r(t) decreases along the solution of  system (2.1), and so the functional I (w)  = - r(T) is 
bounded from below: I (w)  = -r(t0). A minimizing sequence of admissible controls wi(t) ~ D : I(wi)  > 
I(Wi+l) , I(wi) ----> infwe D I (w)  exists as i ~ o o .  We know [4] that the sphere D is compact in the *-weak 
topology of the space L,([t0, 7]), which is dual to the space Lz([to, 7]). Hence a sequence Wik and a 
function w. e D exist such that 

T T 

lim ~ g(s)wik (s)ds = ~ g (s )w ,  (s )dsVg ~ L t ([to, T]) (4.7) 
k--4~ to to 

We denote byyk(t) = (xk(t), rk(t), a~k(t)) the solution of system (2.1) corresponding to the control wik(t). 
Since 0 < rt,(t) < r(to), 0 < xk(t) < 1, ~(to) - w o ( T -  to) <~ ~k(t) <- ~(to) + w o ( T -  to) for all k, the sequence 
of  functions yk(t)  is uniformly bounded on [to, 7]. It can be shown that it is also equicontinuous. 

It is sufficient to prove the uniform boundedness of the right-hand side of the system on the trajectoriesyk(t). 
The variables r(t) and x(t) are connected by the relation r(t)(1 - xz(t)) ~2 = d(t), and the quantity d satisfies Eq. 

(1.2). Hence, for any k 

r~(T)(l - x~(T)) 1/2 = r(t0)(l - x~(t0))I/2 exp (--¢t(T - to)) (4.8) 

Note that the right-hand side of Eq. (4.8) is a constant quantity, depending only on the initial position of the 
system. The sequence I(wik ) = ---rk(T ) decreases as k increases, and the function rk(t) decreases with t, and so 

0 < rl(T) ~< rk(T) ~< rk(t), k = 1,2 ..... t o ~< t ~< T (4.9) 

From this and from (4.8) we obtain 

xl(T) ~< xk(T) (4.10) 

It was shown in Section 2 that the coordinate x(t) increased when ¥(i) > 0 and decreased when ~(i) < 0, and 
that ~(t) vanished no more than once, when it changed sign from plus to minus. Hence, for any trajectory of system 
(2.1) the inequality rain (X(to), x(T)) <~ x(t), to <~ t <~ T is satisfied. Using (4.10)we obtain 0 < min (x(to), xl(T)) <~ 
xk(t), k = 1, 2 . . . . .  to <~ t <~ T. Thus the denominator xk(t)rk(t) on the fight-hand side of the equation for the derivative 
ofk is governed by the constraint 0 < rl(T) min (X(to), xl(T) ) <~ xk(t)rk(t), k = 1, 2 . . . . .  to <~ t <- T. Consequently, 
the right-hand side of system (2.1) is uniformly bounded in k, t along the trajectories yk(t), and the sequence of 
functions yk(t) is equicontinuous. 

By Artsel's theorem a subsequenceyk j ( t )  exists that converges uniformly to some functiony.(t).  We 
verify that the functiony.(t)  is a solution of system (2.1) with control w.( t ) .  We represent system (2.1) 
with control Wk(t) in the form 

I t 

)'k ( t)  = y( t  o) + ~ f (Yk  (x))d'c + ~ w k (x)dx 
tO /1) 

where the vector function f(y) denotes the right-hand side of the system without the control. It is clear 
that 
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The equality 

t t 

lira ~ f (Yk  (x))dx = ~ f ( y ,  (x))dx 
k " ~ ° °  tO t 0 

t t 

lim J w t (x)dx = J w (x)dx 
k ~ o o  t(I I0 

follows from Eq. (4,,7) in which one must put 

if to <<- z <~ t 

if t < x < - T  

The functiony.(t) is therefore a solution of system (2.1) with control w.(t). Because {wi} is a minimizing 
sequence, y., w. is an optimal process, i.e. I (w . )  = infw~ DI(w) .  

There is thus a solution on the set D of the optimal control problem under consideration. The optimal 
control is unique because it is uniquely defined by the maximum principle--a necessary condition for 
optimality--and ha,,; the form w.( t )  = -Wo almost everywhere on [to, T]. It is clear that the function 
w.(t)  = -Wo is also the unique optimal control in the class of piecewise-continuous functions. 

5. N U M E R I C A L  RESULTS 

Figures 2, 4 and 5 show the results of calculations for the special case W = 0. Equation (1.6) and system 
(3.2) were integrated numerically using the Runge-Kutta method with the following parameter values: ct = 0.5, 

rx 10 -3 
0 

4 

0 2 ~, 0 t 

Fig. 4. 

y~  10 -3 

7 

-0.~ ~ 

-/.0 

Fig. 5. 

t Xx 10 -3 0 
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= 1000. The continuous lines correspond to trajectories leaving the point r = (6000, 0, 0), i = (-300, -954, 0) 
in the phase space r , / ' ,  while the dashed lines are trajectories leaving the point r = (2000, 0, 0),/" = (-100, 
-995, 0). Here r is a radius vector giving the position of the object in an inertial system of coordinates with the 
target at the origin. In phase variables x, r the corresponding initial conditions for system (3.2) have the form r = 
6000,x = 0.3 andr  = 2000,x = 0.1. 

Figure 2 shows trajectories of system (3.2) in the phase spacex, r, while Fig. 4 is a graph of the time-dependence 
of the distance between the object and target; the points denote instants of intersection of the trajectory with the 
line cxr = ur. Figure 5 shows the initial segment of the trajectory of motion of the object in the OXY plane of the 
inertial system of coordinates; the points show the position of the object at the indicated times. 
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